Engineered Derivatives of Maltose-Binding Protein
نویسنده
چکیده
Maltose-binding protein (MBP), a member of the periplasmic binding protein family of Gram negative bacteria, is a versatile substrate for protein engineering. In common with other periplasmic proteins, it is extremely protease resistant, and it can fold properly in both the cytoplasmic and periplasmic compartments. It binds a variety of glucose-14-glucose polysaccharides, from maltose and longer chain maltodextrins to -cyclodextrin. Upon binding its ligand, it undergoes a large conformational change. These properties have made MBP attractive for a number of engineering studies that have elucidated its role in maltodextrin transport, tuned its properties as an affinity and solubility tag, and transformed it into an allosteric effector or a biosensor for both its natural ligand and for compounds as varied as zinc and TNT (Marvin & Hellinga, 2001, Naal et al., 2002, Wu et al., 1997).
منابع مشابه
NMR characterization of an engineered domain fusion between maltose binding protein and TEM1 beta-lactamase provides insight into its structure and allosteric mechanism.
RG13 is a 72 kDa engineered allosteric enzyme comprised of a fusion between maltose binding protein (MBP) and TEM1 beta-lactamase (BLA) for which maltose is a positive effector of BLA activity. We have used NMR spectroscopy to acquire [(15)N, (1)H]-TROSY-HSQC spectra of RG13 in the presence and absence of maltose. The RG13 chemical shift data was compared to the published chemical shift data of...
متن کاملModulation of effector affinity by hinge region mutations also modulates switching activity in an engineered allosteric TEM1 beta-lactamase switch.
RG13 is an engineered allosteric beta-lactamase (BLA) for which maltose is a positive effector. RG13 is a hybrid protein between TEM1 BLA and maltose-binding protein (MBP). Maltose binding to MBP is known to convert the open form of the protein to the closed form through conformational changes about the hinge region. We have constructed and genetically selected several variants of RG13 modified...
متن کاملEngineered Escherichia coli silver-binding periplasmic protein that promotes silver tolerance.
Silver toxicity is a problem that microorganisms face in medical and environmental settings. Through exposure to silver compounds, some bacteria have adapted to growth in high concentrations of silver ions. Such adapted microbes may be dangerous as pathogens but, alternatively, could be potentially useful in nanomaterial-manufacturing applications. While naturally adapted isolates typically uti...
متن کاملDevelopment of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif.
A gene coding for a de novo peptide sequence containing a metal binding motif was chemically synthesized and expressed in Escherichia coli as a fusion with the maltose binding protein. Bacterial cells expressing the metal binding peptide fusion demonstrated enhanced binding of Cd2+ and Hg2+ compared to bacterial cells lacking the metal binding peptide. The potential use of genetically engineere...
متن کاملA hot-spot motif characterizes the interface between a designed ankyrin-repeat protein and its target ligand.
Nonantibody scaffolds such as designed ankyrin repeat proteins (DARPins) can be rapidly engineered to detect diverse target proteins with high specificity and offer an attractive alternative to antibodies. Using molecular simulations, we predicted that the binding interface between DARPin off7 and its ligand (maltose binding protein; MBP) is characterized by a hot-spot motif in which binding en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012